
DREAL Rhône-Alpes

Service Prévention des Risques

Août 2013

Directive Inondations

Bassin Rhône-Méditerranée

SOMMAIRE

RÉSUMÉ NON TECHNIQUE	3
I.INTRODUCTION	5
II.PRÉSENTATION GÉNÉRALE DU TRI	7
2.1 - Caractérisation du TRI de MONTELIMAR	8
2.2 - Phénomènes pris en compte pour la cartographie	11
2.3 - Association technique des parties prenantes	13
III.CARTOGRAPHIE DES SURFACES INONDABLES DU TRI	14
3.1 - Carte des surfaces inondables par les débordements du Rhône	14
3.2 - Carte de synthèse des surfaces inondables	23
IV.CARTOGRAPHIE DES RISQUES D'INONDATION DU TRI	23
4.1 - Méthode de caractérisation des enjeux	23
4.2 - Type d'enjeux caractérisés pour la cartographie des risques	
V.LISTE DES ANNEXES	27

Résumé non technique

Le territoire à risque important d'inondation de Montélimar

La sélection du territoire à risque important d'inondation de Montélimar implique la mise en œuvre d'une stratégie concertée pour répondre à la Directive inondation.

La mise en œuvre de la Directive Inondation vise à fixer un cadre d'évaluation et de gestion des risques d'inondation à l'échelle du bassin Rhône-Méditerranée tout en priorisant l'intervention de l'État pour les territoires à risque important d'inondation (TRI).

31 TRI ont été arrêtés le 12 décembre 2012 sur le bassin Rhône-Méditerranée. Cette sélection s'est appuyée sur 3 éléments : le diagnostic de l'évaluation préliminaire des risques d'inondation (EPRI), l'arrêté national définissant les critères de sélection des TRI, la prise en compte de critères spécifiques à certains territoires du bassin en concertation avec les parties prenantes du bassin Rhône-Méditerranée.

L'identification des TRI obéit à une **logique de priorisation** des actions et des moyens apportés par l'État dans sa politique de gestion des inondations. A cet effet, les 31 TRI sélectionnés devront faire l'objet :

- d'ici fin 2013, d'une **cartographie** surfaces inondables et des risques pour les phénomènes d'inondation caractérisant le territoire ;
- de mettre en œuvre des **stratégies locales** de gestion des risques d'inondation dont les objectifs et le périmètre devront être identifiés d'ici fin 2014. Ces dernières nécessiterons un engagement des acteurs locaux dans leur élaboration s'appuyant notamment sur un partage des responsabilités, le maintient d'une solidarité amont-aval face aux risques, la recherche d'une synergie avec les autres politiques publiques.

Le territoire à risque important d'inondation a été sélectionné au regard des conséquences négatives susceptibles d'impacter son bassin de vie au regard de phénomènes prépondérants.

La sélection du TRI de Montélimar s'est appuyée en première approche sur l'arrêté ministériel du 27 avril 2012 qui demande de tenir compte, a minima, des impacts potentiels sur la santé humaine et l'activité économique de l'évaluation préliminaire des risques d'inondation (EPRI). Ce premier diagnostic macroscopique fait ressortir les enjeux dans l'enveloppe approchée des inondations potentielles (EAIP) pour les 6 indicateurs du tableau ci-dessous.

	Impa	act sur la santé hur	maine	Impact sur l'activité économique			
	Population permanente en EAIP (nb d'habitants)	Part de la population permanente en EAIP	Emprise de l'habitat de plain-pieds en EAIP (m²)	Nombre d'emplois en EAIP	Part des emplois en EAIP	Surface bâtie en EAIP (m²)	
Débordements de cours d'eau	31 681	50,60%	125 219	13 693	48,60%	2 575 379	

Le périmètre du TRI, constitué de 12 communes, a été constitué autour du bassins de vie de l'agglomération montilienne. Celui-ci a été précisé pour tenir compte de caractéristiques spécifiques telles que la cohérence hydraulique des débordements du Rhône ou encore de la dangerosité des phénomènes sur certaines communes (Saint-Marcel-les-Sauzet notamment) et de la présence de certaines installations (Centrale de Cruas-Meysse).

La cartographie du TRI de Montélimar

Objectifs généraux et usages

La cartographie du TRI de Montélimar apporte un approfondissement de la connaissance sur les surfaces inondables et les risques pour les débordements de certains cours d'eau (et des submersions marines) pour 3 types d'événements (fréquent, moyen, extrême). De fait, elle apporte un premier support d'évaluation des conséquences négatives du TRI pour ces 3 événements en vue de la définition d'une stratégie locale de gestion des risques.

Elle vise en outre à enrichir le porter à connaissance de l'État dans le domaine des inondations et à contribuer à la sensibilisation du public. Plus particulièrement, le scénario « extrême » apporte des éléments de connaissance ayant principalement vocation à être utilisés pour préparer la gestion de crise.

Toutefois, cette cartographie du TRI n'a pas vocation à se substituer aux cartes d'aléa des PPRI (lorsqu'elles existent sur le TRI) dont les fonctions et la signification ne sont pas les mêmes.

Principaux résultats de la cartographie du TRI

La cartographie du TRI de Montélimar se décompose en différents jeux de carte au 1/25 000e pour :

- les débordements de cours d'eau
 - → un jeu de 3 cartes des surfaces inondables des débordements du Rhône pour les événements fréquent, moyen, extrême présentant une information sur les surfaces inondables et les hauteurs d'eau;
 - → une carte de synthèse des débordements de cours d'eau cartographiés pour les 3 scenarii retenus :
 - → une carte des risques présentant les enjeux situés dans les surfaces inondables ;
 - → une information sur les populations et les emplois exposés par commune et par scénario.

A l'échelle du TRI de Montélimar, la cartographie des risques d'inondation fait ressortir l'estimation des populations et des emplois présentée dans le tableau ci-dessous.

	P	opulation permanent	e		Emplois (min/max)	
	Crue fréquente	Crue moyenne	Crue extrême	Crue fréquente	Crue moyenne	Crue extrême
Débordements de cours d'eau	1 234	2 083	3 824	703/1177	1213/1918	1461/2271

I. Introduction

Une cartographie s'inscrivant dans le cadre de la Directive Inondation

La Directive 2007/60/CE du Parlement Européen et du Conseil du 23 octobre 2007 relative à l'évaluation et la gestion des risques d'inondations dite « Directive Inondation », a pour principal objectif d'établir un cadre pour l'évaluation et la gestion globale des risques d'inondations, qui vise à réduire les conséquences négatives pour la santé humaine, l'environnement, le patrimoine culturel et l'activité économique associées aux différents types d'inondations dans la Communauté.

L'Évaluation préliminaire des risques d'inondation (EPRI), arrêtée le 21 décembre 2011, a posé un diagnostic global à l'échelle du Bassin Rhône-Méditerranée. Sur cette base, un Plan de gestion des risques d'inondation (PGRI) à la même échelle définira un cadre réglementaire de définition des objectifs et des moyens pour la réduction des conséquences dommageables des inondations. Le PGRI devra être arrêté avant le 22 décembre 2015 par M. le préfet coordonnateur de bassin Rhône-Méditerranée.

Le PGRI constitue un document de planification pour la gestion des risques d'inondation sur le bassin Rhône-Méditerranée. A ce titre, au-delà de dispositions communes à l'ensemble du bassin, celui-ci doit porter les efforts en priorité sur les territoires à risque important d'inondation (TRI).

Sur la base du diagnostic de l'EPRI et d'une concertation avec les parties prenantes du bassin, 31 TRI en Rhône-Méditerranée ont été sélectionnés par arrêté du préfet coordonnateur de bassin du 12 décembre 2012. Le choix de ces territoires et de leurs périmètres s'est appuyé sur la définition d'un bassin de vie exposé aux inondations (de manière directe ou indirecte) au regard de leur impact potentiel sur la santé humaine et l'activité économique, mais aussi d'autres critères tels que la nature et l'intensité des phénomènes ou encore la pression démographique et saisonnière.

Le TRI de Montélimar a été retenu au regard des débordements de cours d'eau (et des submersions marines) considérés comme prépondérants sur le territoire. La qualification de ce territoire en TRI implique l'élaboration d'une ou plusieurs stratégies locales de gestion des risques d'inondation qui déclinent les objectifs de réduction des conséquences négatives des inondations du PGRI à l'échelle d'un bassin risque cohérent et engage l'ensemble des pouvoirs publics concernés territorialement.

Pour la définition de cette stratégie, le TRI constitue le périmètre de mesure des effets et éclaire les choix à faire et à partager sur les priorités. La cartographie des surfaces inondables et des risques apporte un approfondissement de la connaissance en ce sens pour 3 scenarii :

- les événements fréquents (d'une période de retour entre 10 et 30 ans) ;
- les événements d'occurrence moyenne (généralement d'une période de retour comprise entre 100 et 300 ans);
- les événements exceptionnels (d'une période de retour de l'ordre de la millénale).

Objectifs de la cartographie des surfaces inondables et des risques d'inondation

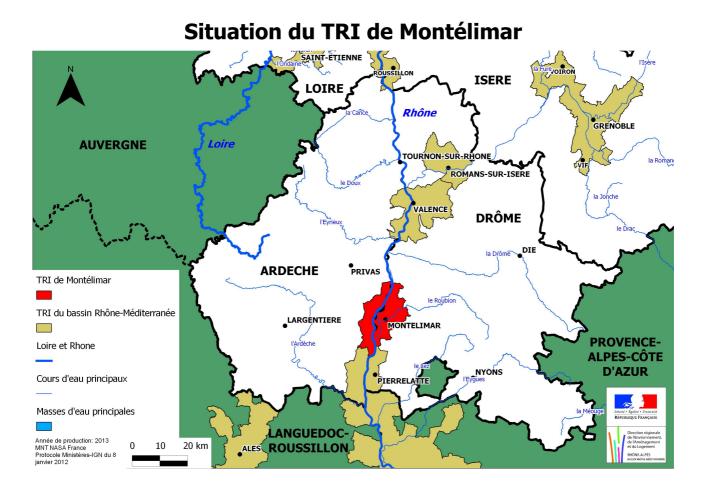
En dehors de l'objectif principal, décrit plus haut, de quantification des enjeux situés dans les TRI pour différents scenarii d'inondation, ces cartes des surfaces inondables et des risques d'inondation visent à enrichir le porter à connaissance de l'État dans le domaine des inondations et à contribuer à la sensibilisation du public.

A l'instar des atlas de zones inondables (AZI), les cartes contribueront à la prise en compte du risque dans les documents d'urbanisme et l'application du droit des sols par l'État et les collectivités territoriales, selon des modalités à adapter à la précision des cartes et au contexte local, et ceci surtout en l'absence de PPRi ou d'autres documents de référence à portée juridique.

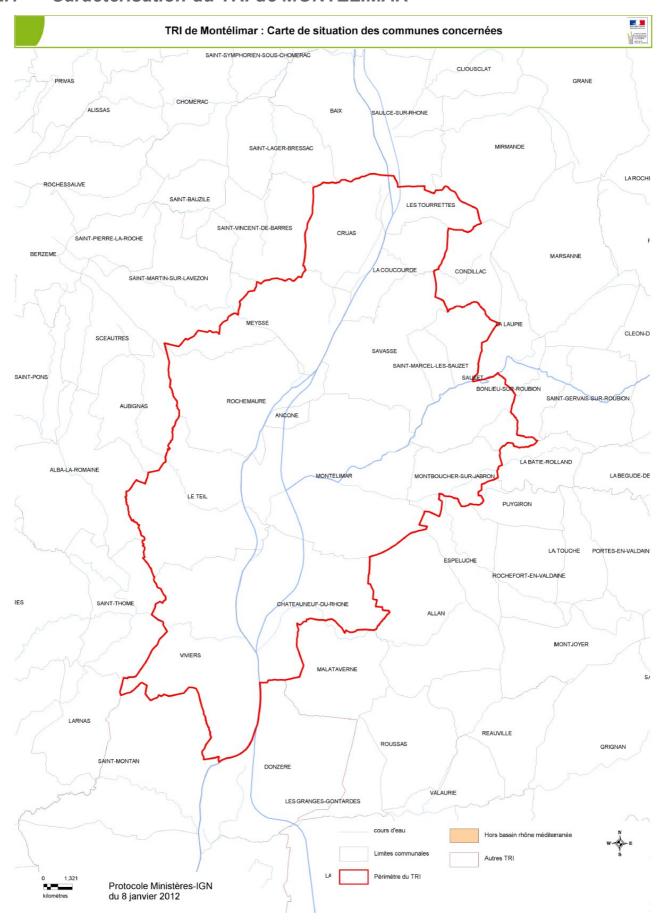
Par ailleurs, le scénario « extrême » apporte des éléments de connaissance ayant principalement vocation à être utilisés pour préparer la gestion de crise.

Les cartes « directive inondation » n'ont pas vocation à se substituer aux cartes d'aléa des PPRI (lorsqu'elles existent sur les TRI) dont les fonctions et la signification ne sont pas les mêmes.

Contenu de la cartographie des surfaces inondables et des risques d'inondation


La cartographie des surfaces inondables et des risques d'inondation du TRI est constitué d'un jeu de plusieurs types de cartes :

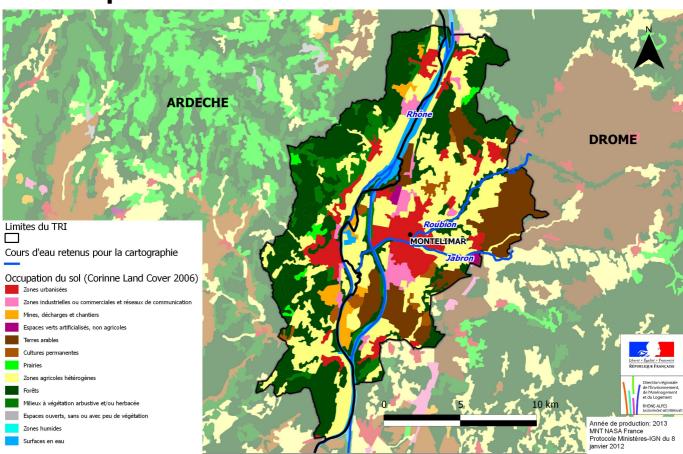
- <u>Des cartes des surfaces inondables de chaque scénario</u> (fréquent, moyen, extrême) pour les débordements de cours d'eau (et pour les submersions marines).
 - Elles représentent l'extension des inondations, les classes de hauteurs d'eau, et le cas échéant les vitesses d'écoulement. Selon les configurations et l'état des connaissances propre à chaque cours d'eau, certains cours d'eau du TRI sont cartographiés de manière séparée.
- Des cartes de synthèse des surfaces inondables des différents scénarii pour les débordements de cours d'eau (et pour les submersions marines).
 - Elles représentent uniquement l'extension des inondations synthétisant sur une même carte les débordements des différents cours d'eau selon les 3 scénarii.
- Des cartes des risques d'inondation
 - Elles représentent la superposition des cartes de synthèse avec les enjeux présents dans les surfaces inondables (bâti ; activités économiques ; installations polluantes ; établissements, infrastructures ou installations sensibles dont l'inondation peut aggraver ou compliquer la gestion de crise).
- <u>Des tableaux d'estimation des populations et des emplois</u> par commune et par scénario.


Le présent rapport à pour objectif de rappeler les principaux éléments de caractérisation du TRI de Montélimar (II), d'expliciter les méthodes utilisées pour cartographier les surfaces inondables (III) et la carte des risques d'inondation (IV). Ce rapport est accompagné d'un atlas cartographique qui présente le jeu des différents types de carte au 1/25 000°.

II. Présentation générale du TRI

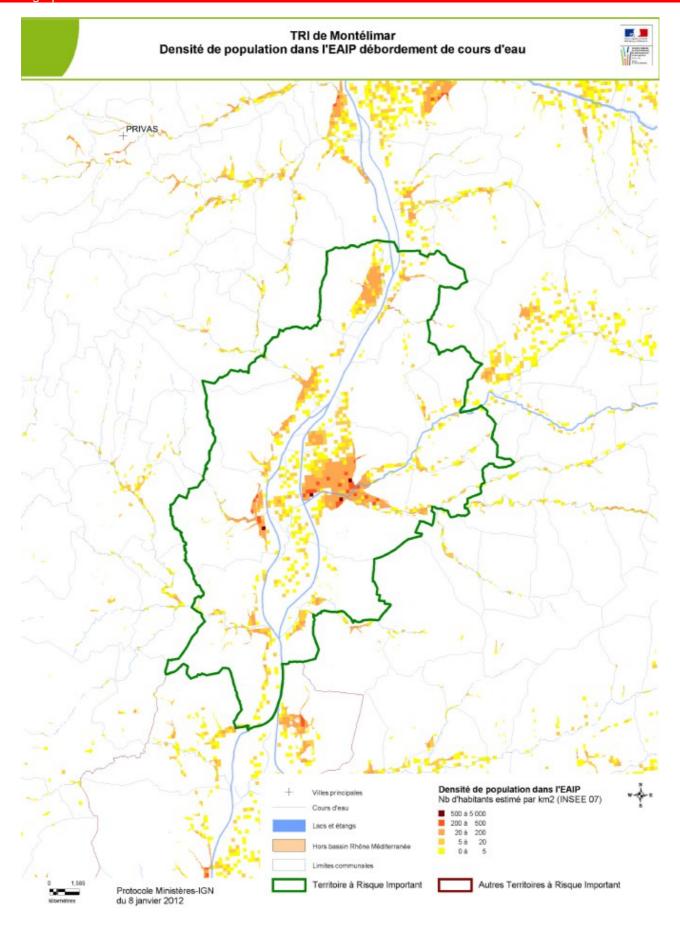
Le territoire à risque important d'inondation (TRI) de Montélimar se situe à la confluence du Rhône et du Roubion à cheval sur les départements de l'Ardèche et de la Drôme.

2.1 - Caractérisation du TRI de MONTELIMAR



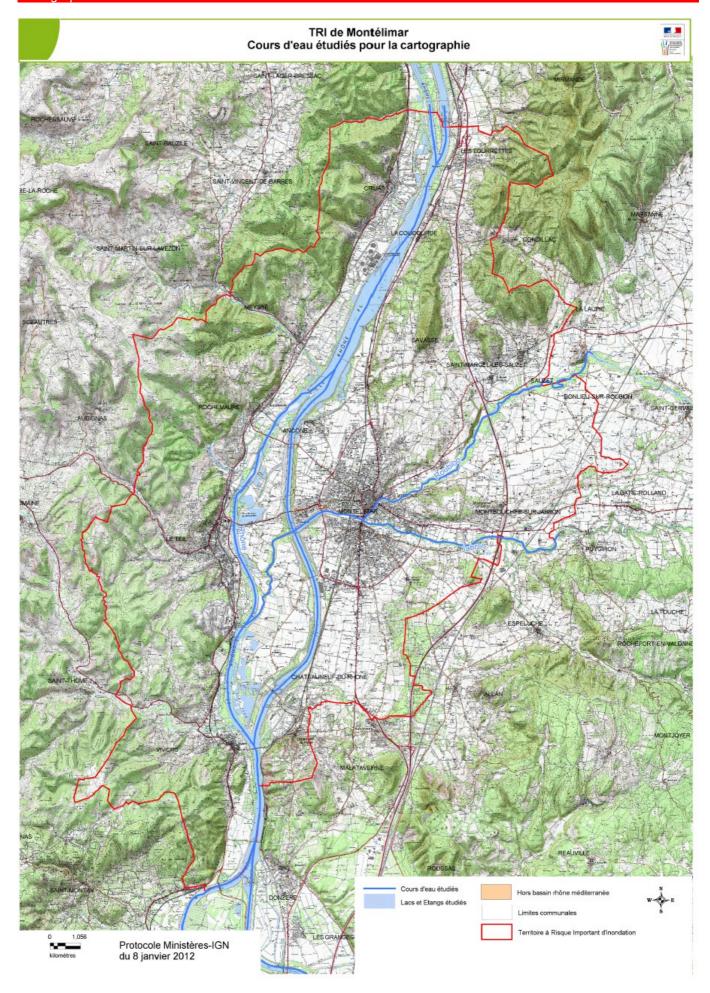
Le périmètre du TRI de Montélimar défini à partir de l'unité urbaine de son chef lieu est constitué de 12 communes : Rochemaure, Le Teil, Ancone, Montélimar, Montboucher-sur-Jabron, Sauzet, Saint-Marcelles-Sauzet, Meysse, Cruas, Savasse, La Coucourde, Les Tourettes.

Ce bassin de vie regroupe plus de 65 000 habitants sans toutefois présenter une affluence saisonnière significative (+9 %).


L'urbanisation y est principalement structurée le long des grandes infrastructures de transport de la vallée du Rhône autour des pôles urbains de Montélimar et du Teil. Le territoire se situe au carrefour des déplacements entre d'une part un axe de liaison vers l'ouest avec le Massif Central et d'autre part un axe nord-sud très fortement congestionné en période estivale reliant le nord de la France à l'arc méditerranéen. Au-delà de cette centralité urbaine, le reste du territoire plus rural est principalement agricole en dehors des espaces naturels encaissés de la rive ardéchoise du Rhône.

Occupation du sol du TRI de Montélimar en 2006

En première approche, l'évaluation préliminaire des risques d'inondation (EPRI), illustrée par la carte cidessous, fait ressortir une exposition centrée autour du noyau urbain Montélimar – Le Teil. Territoire principalement concerné par les débordements du Rhône et du Roubion, son exposition apparaît plus vulnérable aux crues du Roubion et du Jabron qu'aux crues du Rhône. On notera notamment la commune très exposée de Saint-Marcel-les-Sauzet (crue du Merdarie affluent rive gauche du Roubion).


Par ailleurs, le territoire intègre secteur de la Centrale nucléaire de Cruas-Meysse qui est aujourd'hui protégé par la digue du Sichier située sur le domaine concédé à la CNR. Cette digue est en cours de renforcement et de rehaussement pour répondre à l'amélioration de la politique de sûreté d'EDF visant à disposer d'une protection intrinsèque de la plateforme à l'intérieur du périmètre INB. Cette modification a été déclarée au titre de la Loi TSN et a obtenu en mars 2012 un accord pour réaliser ces travaux.

2.2 - Phénomènes pris en compte pour la cartographie

Le TRI de Montélimar a été retenu au regard des débordements du Rhône, du Roubion et de ses affluents considérés comme phénomènes prépondérants d'inondations impactant le territoires. C'est en ce sens que les cours d'eau étudiés pour la cartographie des surfaces inondables et des risques du TRI se sont centrés sur les débordements du Rhône, du Roubion et du Jabron.

Cependant, compte-tenu des calendriers européens imposant une approbation de cette cartographie pour le 22 décembre 2013, l'état des connaissances des phénomènes d'inondations sur le bassin-versant du Roubion ne permet pas d'en établir une cartographie dans les délais. De fait, il a été choisi pour ce cycle de la Directive inondation de ne cartographier que les débordements du Rhône impactant le territoire. L'étude des phénomènes d'inondation au sein du bassin-versant du Roubion feront néanmoins l'objet d'un axe spécifique d'amélioration de la connaissance dans le cadre du Plan de gestion des risques d'inondation (PGRI).

2.3 - Association technique des parties prenantes

La DDT 26 Service Prévention des Risques La DDT 07 Service Prévention des Risques

La Communauté d'Agglomération de Montélimar-Sésame

La Communauté de Communes de Barres-Coiron

La Communauté de Communes du Pays de Marsanne

La Communauté de Communes Rhône-Helvie

Le Syndicat Mixte du Bassin Roubion et Jabron

Le Conseil Général de la Drôme

Le Conseil Général de l'Ardèche

La Chambre de Commerce et d'Industrie de la Drôme

La Chambre d'Agriculture de la Drôme

La Chambre de Commerce et d'Industrie de l'Ardèche

La Chambre d'Agriculture de l'Ardèche

Le SIDPC – Préfecture de la Drôme

Le SDIS de la Drôme

Le SIDPC – Préfecture de l'Ardèche

Le SDIS de l'Ardèche

III. Cartographie des surfaces inondables du TRI

2.4 - Carte des surfaces inondables par les débordements du Rhône

Principales caractéristiques des phénomènes

A la variété des scénarios climatiques et hydrologiques régissant la formation des crues du Rhône correspondent des conditions de propagation également variées. De plus les affluents sont nombreux et importants. Au total, la dynamique des crues sur le bassin du Rhône ne relève pas d'un simple et unique schéma. En revenant à un découpage par grands tronçons, on peut en présenter les traits principaux.

Sur le Rhône supérieur, en aval du Léman, la propagation de la crue est considérée comme semi-rapide. Les affluents alpins réagissent rapidement aux précipitations et l'augmentation des débits se répercute en quelques heures dans le Rhône. La crue se forme en une demi-journée après les épisodes de pluie sur le secteur le plus en amont. On notera cependant que la plaine de Chautagne et le lac du Bourget écrêtent jusqu'à 500 m3/s sur un débit de 3000 m3/s du Rhône supérieur. Au niveau de la confluence de l'Ain, la crue arrive dans les 24 heures et continue à progresser durant une demi-journée, après avoir été à nouveau écrêtée, pour des débits supérieurs à 1500m3/s, dans la plaine de Brangues-Le Bouchage. La crue combinée du Rhône et de l'Ain arrive ensuite à Lyon en moins de 12 heures. Cette relative rapidité de la propagation des crues limite la durée de la phase la plus critique qui ne se prolonge en général pas au-delà de 2 jours à Lyon.

A l'aval de Lyon la crue semi-rapide du Rhône et la crue très lente et prolongée de la Saône se rassemblent pour se propager avec une double dynamique, souvent plus rapide dans un premier temps, puis plus lente dans un deuxième temps. Avant d'arriver à Valence, l'Isère et les affluents venant du Massif Central apportent chacun une nouvelle composante à la crue du Rhône en fonction des précipitations qu'ils ont reçues. Le débit de base met environ 12 heures à se propager entre Lyon et Valence, mais il peut être augmenté en quelques heures par celui des affluents de la rive droite et en une demi-journée par celui de l'Isère.

En descendant la vallée, la dynamique de la crue, tributaire des réactions des affluents méridionaux, se complexifie. On peut distinguer trois principales configurations.

- · la première voit les crues formées entre Lyon et Valence s'atténuer vers l'aval quand les bassins des affluents ont été faiblement arrosés.
- · la configuration qui produit des crues généralisées correspond à des apports répartis le long du cours. C'est la crue d'Octobre 1993 et celle de Mai 1856, avec toutefois un phénomène plus complexe comprenant plusieurs ondes de crue.
- · la dernière configuration correspond à une production prépondérante des affluents du cours aval. Elle peut s'observer à partir de débits faibles du Rhône à Lyon, la crue se formant essentiellement dans le cours aval (scénario des crues de 2002 et 2003). Les crues des affluents sont souvent décalées dans le temps mais elles contribuent à augmenter les débits propagés.

Sur le cours du Rhône aval, en dehors des crues qui se propagent sans renforcement depuis Lyon-Valence en pratiquement 2 jours, les réactions se manifestent dans le Rhône en une douzaine d'heures après les épisodes de pluie.

1. Principaux secteurs hydrographiques du Rhône

Secteur	Affluents et zones Affluents et zones d'expansion impactant fortement le régime du Rhône	Noeuds hydrographiques
Rhône-amont du Léman au Fier	L'Arve	Confluence Fier
Rhône-amont du Fier au Guiers	Le Fier – Plaine de Chautagne	Confluence Guiers
Rhône-amont du Guiers à l'Ain	Le Guiers – Plaine de Brangues-Le Bouchage	Confluence Ain
Rhône-amont de l'Ain à la Saône (Lyon)	L'Ain – Plaine de Miribel-Jonage	Confluence Saône
Rhône-moyen de la Saône à l'Isère	La Saône, affluents du Pillat	Confluence Isère
Rhône-moyen de l'Isère à l'Ardèche	L'Isère,le Doux, L'Eyrieux, la Drôme - Plaine de Donzère-Mondragon	Confluence Ardèche
Rhône-aval de l'Ardèche à la Durance	L'Ardèche, la Cèze, l'Ouvèze – Plaine de Caderousse, Ile de la Barthelasse	Confluence Durance
Rhône-aval de la Durance au Gard	Le Gard	Confluence Gard
Rhône-aval, secteur du Delta	Plaines de Vallabrègues-Boulbon, de Beaucaire- Fourques, de Tarascon-Arles, Camargue	Mer Méditerranée

La chronologie des crue historiques du Rhône fait apparaître plusieurs phases de répétition des crue fortes et elle fait ressortir plusieurs événements très intenses qui ont été décrits par Maurice Champion notamment :

Crues historiques décrites	Régime hydroclimatique	Inondations
Novembre 1840	Crue généralisée provoquée par deux vagues de pluies océaniques et méditerranéennes extensives, avec très forte contribution de la Saône	Débordements généralisés sur l'ensemble du Rhône en aval de Lyon
Mai-juin 1856	Crue généralisée provoquée par une conjonction de pluies océaniques et méditerranéennes extensives	Débordements généralisés, notament à Lyon, Avignon et en Camargue suite à des ruptures de digues
Novembre 1935	Crue à forte composante méditerranéenne extensive impactant surtout le Rhône aval	Débordements plus importants en allant vers l'aval, notamment à Avignon
Février 1990	Crue océanique sur le Rhône-amont avec composante nivale	Débordements généralisés jusqu'à la confluence de l'Ain, puis débordements importants en amont de Lyon
Octobre 1993	Crue océanique résultant de l'accumulation des crues modérées des affluents	Débordements dans les principales zones d'expansion du Rhône en aval de Lyon et par ruptures de digues du Petit-Rhône
Janvier 1994	Crue océanique modérée renforcée en aval suite aux pluies localement fortes sur la Drôme ou la Durance	Débordements dans les principales zones d'expansion du Rhône en aval de Lyon et par ruptures de digues du Petit-Rhône
Décembre 2003	Crue méditerranéenne extensive formée uniquement par les apports des affluents de Lyon à la mer	Débordements dans les principales zones d'expansion du Rhône en aval de Montelimar et par ruptures de digues sur le Rhône-aval (inondation d'Arles et de la rive gardoise en aval de Beaucaire)

Pour plus de détails sur les événements historiques, on pourra se reporter à l'Evaluation Préliminaire des Risques d'Inondation (unité de présentation Rhône).

Études et méthodes mobilisées

Le Rhône bénéficie d'une somme de connaissances importantes sur son fonctionnement. On citera en premier les travaux de Maurice Pardé (Le régime du Rhône, Lyon, 1925) qui représente une référence scientifique incontournable sur le fonctionnement hydrologique du Rhône et sur les paramètres des crues historiques du XIXème siècle et du début du XXème. Ensuite, le Rhône a fait l'objet d'études hydrauliques détaillées dans le cadre de la réalisation des aménagements hydroélectriques de la CNR entre les années 1940 et 1960. Plus récemment, suite aux crues importantes des années 1990, l'Etude globale sur le Rhône (1999-2002) avait pour objet d'élaborer une stratégie de gestion du Rhône. Elle comprend les volets hydrologique, hydraulique, transport solide et enjeux qui ont chacun produit des données et des analyses consolidées sur l'ensemble du Rhône français.

Le travail de cartographie de l'aléa attendu sur les TRI de Lyon, Vienne, Valence, Montélimar et Avignon repose sur une méthode commune et homogène sur le Rhône qui comporte trois étapes (seul le TRI d'Arles fait l'objet d'une méthode spécifique du fait de la configuration deltaïque particulière).

2. Traitements statistiques des données historiques pour déterminer les scénarios hydrologiques des crues faible, moyenne et extrême

Les séries de cotes et débits des crues du Rhône sont connues durant des intervalles de temps variables selon les stations à Pougny (PK), Bognes (PK), Lagnieu (PK) et Lyon-Perrache (PK) sur le Rhôneamont, puis à Ternay (PK), Valence (PK), Viviers (PK), Avignon (Roquemaure PK) et Beaucaire-Tarascon (PK) sur le Rhône-aval.

RANG	POUGNY	1925-2002	BOGNES	1853-2002	LAGNI	EU 189	1-2002	LYON MO	1900-2001	
	Date	Q en m3/s	Date	Q en m3/s	Date	H en m	Q en m3/s	Date	H en m	Q en m3/s
1	01/01/1944	1520	20/01/1905	2000	16/02/1990	6.02	2445	24/11/1944	6.02	4250
2	15/11/2002	1410	20/01/1910	2000	11/11/1944		2400	16/02/1928	6.10	4150
3	14/05/1999	1300	23/12/1918	1920	25/12/1918		2100	25/12/1918	5.90	3900
4	22/09/1968	1280	03/10/1888	1900	22/01/1910		2090	26/02/1957	5.22	3700
5	08/07/1980	1250	30/05/1856	1800	16/02/1928		2025	21/01/1910		3550
6	01/01/1954	1230	25/09/1863	1800	16/01/1899		1995	12/02/1945	5.00	3420
7	01/01/1951	1220	06/08/1914	1700	18/01/1955		1950	28/12/1925	5.00	3250
8	15/10/1981	1200	15/02/1990	1685	26/02/1957		1820	16/02/1990	3.70	3230
9	01/01/1952	1170	19/10/1855	1640	23/11/1992	4.83	1797	30/12/1923	4.95	3210
10	01/01/1950	1150	24/05/1878	1625	27/09/1927		1785	19/01/1955	4.56	3150
11	01/01/1955	1150	15/01/1899	1550	13/10/1988		1784	01/03/1914	4.98	3120
12	14/02/1990	1145	26/09/1896	1540	17/11/2002	4.60	1775	14/11/1950	4.53	3060
13	01/01/1927	1140	24/11/1944	1525	09/10/1993	4.77	1750	20/11/1939	4.45	2920
14	29/06/1974	1130	25/09/1927	1520	27/09/1896		1720	09/10/1993	3.43	2825
15	01/01/1960	1120	15/11/2002	1500	30/12/1923		1645	01/12/1913	4.58	2810
16	29/06/1970	1110	04/11/1859	1500	22/12/1991		1644	17/11/2002	3.29	2800
17	01/01/1930	1100	15/06/1889	1500	23/03/2001	4.38	1626	05/01/1936	4.30	2800
18	01/01/1936	1090	22/09/1968	1500	19/11/1939		1585	27/09/1927	4.32	2760
19	16/05/1983	1090	06/01/1982	1490	27/12/1916		1585	04/09/1956	4.05	2760
20	08/07/1996	1085	06/08/1875	1470	08/08/1914		1585	01/02/1916	4.45	2750
21	08/06/1987	1075	14/07/1879	1470	12/02/1977		1580	23/11/1992	3.30	2745
22	10/10/1988	1075	16/05/1983	1450	08/05/1933		1580	23/12/1991	3.08	2683
23	22/03/2001	1074	27/12/1882	1440	08/05/1932		1580	06/10/1935	4.12	2670
24	01/01/1982	1070	09/02/1955	1430	04/02/1897		1575	16/11/1940	4.08	2670
25	01/01/1946	1060	18/05/1877	1420	01/01/1952		1575	10/04/1922	4.25	2660
26	10/02/1977	1050	26/12/1916	1400	22/06/1987		1564	06/03/1931	4.15	2660
27	06/10/1993	1046	07/09/1946	1390	27/02/1995		1564	17/05/1983	3.48	2645
28	01/01/1931	1037	24/04/1880	1380	17/05/1983		1562	31/03/1902		2620
29	17/07/1973	1020	15/10/1981	1380	28/12/1925		1560	13/12/1961	3.85	2620
30	01/01/1943	1000	25/02/1957	1370	31/03/1902		1555	14/03/2001	3.02	2550

PLUS FORTES CRUES ANNUELLES DU RHONE AVAL															
RANG	TERNA	Y 1895	i-2001	VALEN	CE 185	5-2001	VIVIER	0-2001	AVIGN	ON (1845	5-1994)	BEAUCAIRE 1856-1999			
	Date	H en m	Q en m3/s	Date	H en m	Q en m3/s	Date	H en m	Q en m3/s	Date	H en m	Q en m3/s	Date	H en m	Q en m3/s
1	26/02/1957		5320	31/05/1856	7.00	8300	09/10/1993	4.85	7715	03/12/2003		10700	04/12/2003		11500
2	16/02/1928		5120	01/11/1896	6.11	7400	02/12/2003	4.92	7700	31/05/1856	7.83	10400	31/05/1856	7.95	11640
3	01/01/1955		5075	08/10/1993	5.30	6700	07/01/1994		7588	08/01/1994	7.20	9000	08/01/1994		11006
4	26/11/1944		4850	11/11/1886	5.77	6620	17/11/2002	4.71	7500	14/11/1935	7.32	8710	12/11/1886	7.55	10200
5	02/11/1896		4830	26/11/1944	5.75	6620	21/11/1951		6660	30/09/1900	6.94	8650	10/10/1993		9800
6	25/12/1918		4830	16/11/2002	5.22	6600	14/06/1941		6470	22/11/1951	7.27	8270	14/11/1935	7.68	9600
7	23/03/2001	5.84	4780	17/02/1928	5.66	6480	20/01/1955		6320	10/10/1907	6.83	8270	22/11/1951	7.64	9170
8	27/05/1983		4756	19/01/1955	5.70	6300	27/11/1944		6180	09/10/1993	6.39	8200	21/10/1872	6.87	9080
9	05/01/1936		4700	26/12/1918	5.54	6100	23/03/2001	3.96	6162	12/11/1886	6.55	8125	02/11/1896	7.00	9060
10	12/02/1945		4690	03/01/1883		6040	13/11/1935		6000	02/11/1896	6.64	8115	13/11/1996		8981
11	17/11/2002	5.67	4613	23/03/2001	4.88	6022	18/02/1928		5975	07/12/1910	6.43	7925	30/09/1900	7.08	8940
12	30/12/1923		4570	06/01/1936	5.40	5830	28/02/1957	4.00	5900	21/10/1872	6.26	7820	01/01/1889	6.83	8780
13	10/10/1993	5.73	4417	18/05/1983	4.65	5690	11/12/1954		5860	06/01/1919	6.68	7725	11/11/1976		8690
14	21/01/1910		4380	27/02/1957	5.40	5680	19/05/1983	3.77	5850	19/10/1846	5.80	7440	08/12/1910	7.02	8660
15	17/02/1990	5.65	4354	31/12/1923	5.30	5630	07/01/1936		5800	29/10/1882	6.07	7265	10/11/1907	6.83	8500
16	23/11/1992	5.64	4309	02/12/2003	4.60	5600	13/11/1996		5795	22/12/1958	6.70	7110	29/10/1882	6.60	8390
17	16/01/1899		4230	13/11/1935	5.23	5470	05/01/1919		5770	11/11/1976	6.00	7080	06/01/1919	6.80	8280
18	19/12/1981		4186	05/01/1919	5.19	5450	26/12/1918		5725	15/04/1847	5.37	7040	24/10/1977		8125
19	01/01/1919		4160	28/10/1882	5.18	5440	01/12/1910		5720	09/11/1982	5.70	7010	28/10/1864		8100
20	12/02/1977		4105	07/01/1994	4.48	5380	10/10/1988		5655	08/10/1960		6950	09/11/1982		8025
21	14/11/1935		4100	18/12/1981	4.20	5376	04/05/1977		5480	28/10/1864	5.70	6920	19/12/1997		8020
22	06/11/1939		4090	23/11/1992		5328	23/11/1992		5464	29/11/1944	6.40	6750	08/10/1960	6.98	7960
23	08/01/1982		4045	18/01/1899	5.10	5300	20/11/1950		5460	22/01/1955	6.49	6710	22/12/1958		7920
24	23/02/1999	5.22	4040	11/04/1922	5.07	5280	23/03/1937		5400	03/01/1936	6.39	6570	21/05/1917	6.56	7850
25	28/12/1925		4030	02/06/1877		5235	06/10/1960		5390	12/10/1988		6450	03/01/1936	6.82	7820
26	05/09/1956		3960	20/12/1910	5.06	5220	18/11/1940		5390	22/04/1848	5.25	6445	23/10/1891		7800
27	12/04/1922		3940	01/01/1924		5220	15/02/1945		5375	22/10/1891	5.55	6400	27/02/1978		7800
28	26/02/1995	5.05	3883	15/03/1876	5.02	5200	08/05/1932		5375	09/12/1977	5.67	6360	06/10/1924		7600
29	09/03/1914		3870	17/02/1990		5189	31/12/1923		5375	07/11/1963	6.36	6320	21/10/1855		7550
30	27/11/1950		3840	03/11/1859		5160	17/02/1990		5345	30/10/1853	5.18	6290	04/11/1914		7480
31				01/04/1902		5120	14/03/1931		5340						

L'importance relative de ces événements s'évalue en les comparant aux données statistiques qui sont régulièrement exploitées. Sur le Rhône, les stations limnimétriques permettent de connaître les hauteurs d'eau depuis plus de cent ans et les débits sur des périodes variables. Les calculs statistiques effectués sur ces données permettent d'évaluer les probabilités d'occurrence des crues et d'établir les débits des crues caractéristiques.

On qualifie de crue décennale et de crue centennale les crues qui ont respectivement une chance sur 10, et une chance sur 100, d'être atteintes ou dépassées chaque année. Ces crues théoriques sont essentielles pour estimer la rareté de crues historiques constatées.

Station Débit (m³/s)	Pougny	Bognes	Seyssel	Brens	Lagnieu	Perrache	Ternay	Valence	Viviers	Beaucaire- Tarascon
Débit de la crue caractéristique décennale (Q10)	1180	1450	1430	1720	1810	3120	4450	5620	6100	8400
Débit de la crue caractéristique centennale (Q100)	1470	1920	1940	2150	2400	4230	6000	7510	8120	11300
Débit de la crue caractéristique exceptionnelle	1800	2375	2450	2570	2970	5310	7310	9370	10100	14160

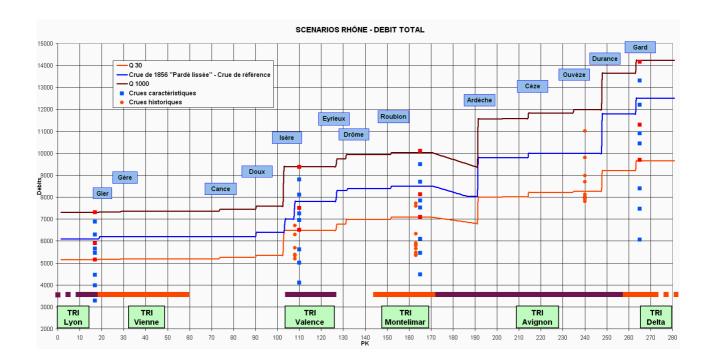
Débits caractéristiques issus du volet Hydrologie de l'Etude globale Rhône (EGR)

L'actualisation de l'hydrologie EGR (datant de 2000) est réévaluée sur les stations du Rhône-aval de Viviers et Beaucaire pour intégrer la série des années 2000 à 2012 comprenant plusieurs crues, dont celle de 2003. Compte tenu de l'importance de la série disponible en 2000, il n'est toutefois pas attendu une évolution notable des débits caractéristiques mentionnés plus haut.

En application de la circulaire du 16 juillet 2012 relative à la mise en oeuvre de la phase « cartographie » de la directive européenne relative à l'évaluation et à la gestion des risques d'inondation, trois scénarios hydrologiques sont définis sur le Rhône :

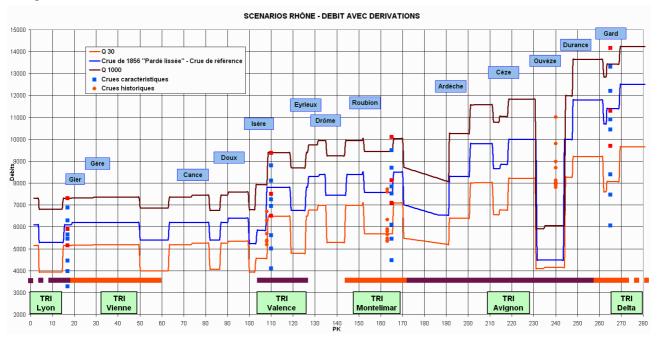
- *crue faible*: scénario hydrologique Q 30 homogène sur chaque TRI;
- crue moyenne: scénario hydrologique d'une crue généralisée type 1856 (scénario lissé pour qu'il soit homogène sur chaque TRI) qui correspond à une période de retour entre 100 et 200 ans selon les secteurs. A l'amont immédiat de Lyon, c'est la crue historique de 1944 qui est retenue avec une période de retour proche de la centennale. La crue moyenne correspond à la crue de référence des Plans de prévention des risques d'inondation (PPRi);
- *crue extrême* : scénario hydrologique d'une crue millénale.

Exemple de détermination du scénario hydrologique de la crue moyenne :


La première étape a consisté à affiner le scénario hydrologique de la crue de 1856. En effet, les données de référence pour cette crue sont établies uniquement aux principales stations historiques de Givors, Valence, Viviers et Beaucaire, ainsi que sur les principaux affluents : Arve, Ain, Saône, Isère, Eyrieux, Drôme, Ardèche, Durance. Le scénario de crue correspondant (« Pardé-brut ») a la particularité de comprendre des crues de l'Isère et de la Drôme particulièrement fortes, comparativement à celle d'affluents comme l'Eyrieux, l'Ardèche et la Durance. Par ailleurs, ce scénario ne permet pas de répartir les apports d'autres affluents importants comme le Doux, la Cèze, le Roubion ou même le Gard.

Pour pouvoir calculer la ligne d'eau de cette crue en situation actuelle, un scénario de crue plus complet a donc été reconstitué. Il s'agit d'un scénario de crue équivalent en importance (dit «1856 Pardé-lissé » par la suite), construit en partant du débit historique de 6100m3/s à la confluence Rhône-Saône pour obtenir le débit historique de 12500m3/s à Beaucaire :

- en intégrant des débits davantage proportionnels aux débits caractéristiques pour chacun des affluents principaux,
- en proposant une répartition des apports plus équilibrée hydrologiquement que dans le scénario « Pardé-brut ».

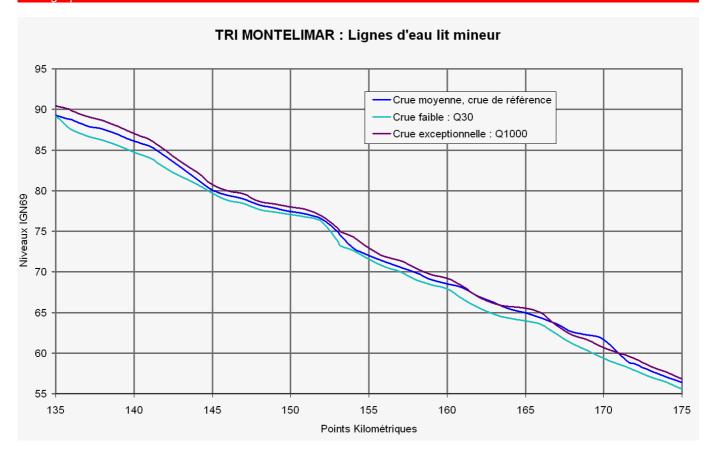

Le tableau et le graphique suivant montrent comment évoluent, d'amont en aval, les débits des trois scénarios de crue à chaque confluence importante avec l'indication de l'apport de ces affluents principaux.

Station Débit (m³/s)	Lyon Perrache Lyon Pont- Morand	Ternay	Valence	Viviers	Beaucaire- Tarascon	
Débit de la crue faible	3650 / Q30	5150 / Q30	6500 / Q30	7100 / Q30	9650 / Q30	
Débit de la crue moyenne - 1856	4230 / Q30	6100 / Q130	7800 / Q150	8500 / Q160	12500 / Q230	
Débit de la crue exceptionnelle	5300 / Q1000	7300 / Q1000	9400 / Q1000	10000 / Q1000	14150 / Q1000	

Les aménagements hydroélectriques CNR sont caractérisés par leur débit d'équipement ou débit total turbinable. En crue, il est possible de faire transiter la quasi totalité de ce débit dans le canal usinier (sauf cas particuliers comme dans l'aménagement de Donzère ou l'aménagement de Vallabrègues). Cependant il est nécessaire de considérer des hypothèses de fonctionnement dégradé, comme cela a été fait pour définir l'aléa de référence.

Les hypothèses prises consistent à limiter les débits dérivés dans les canaux usiniers proportionnellement au débit de la crue : 70 % pour la crue faible, 50 % pour la crue moyenne et 30 % pour la crue exceptionnelle.

3. Le recours à un modèle hydraulique 1D à casiers pour calculer la ligne d'eau en lit mineur

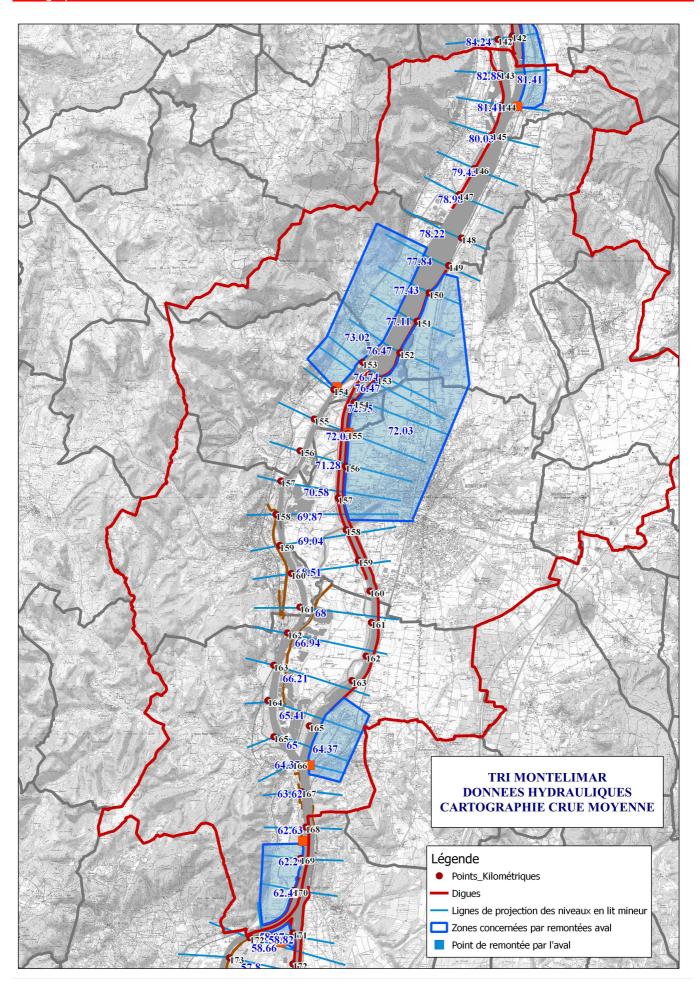

Pour chaque scénario hydrologique qui renseigne la progression des débits de l'amont à l'aval, les niveaux d'eau en lit mineur sont calculés à partir d'un modèle hydraulique produisant les trois lignes d'eau des crues faible, moyenne et extrême selon des profils du Rhône espacés de 100m environ. Le calcul des lignes d'eau en lit mineur a été effectué en utilisant le modèle calé pour l'Étude Globale sur le Rhône, avec des hypothèses de fonctionnement dégradé des aménagements hydroélectriques en période de crue (précisées pour chaque scénario précédemment).

Ce modèle hydraulique disponible permettant de calculer les lignes d'eau de crue est celui qui est mis en œuvre et actualisé par la CNR depuis l'entrée du Rhône en France jusqu'au barrage de Vallabrègues. Dans le cadre de la convention d'utilisation partagée de ce modèle entre la CNR et l'Etat, les services de l'Etat (DREAL Rhône-Alpes) procèdent aux modélisations nécessaires pour définir les lignes d'eau des trois scénarios de crue Q 30, Q1856 et Q1000. Il s'agit d'un modèle filaire à casier (1D) utilisant le code de calcul CRUE de la CNR. Il est régulièrement actualisé par la CNR en intégrant notamment les données bathymétriques qui sont régulièrement relevées ainsi que les données hydraulique (mesures de débits). De Beaucaire à la mer, le modèle disponible est celui qui a été mis en œuvre pour le volet hydraulique de l'Etude globale que le Rhône per le burson d'étude Egis Egy. Il g'agit également d'un modèle à agrier 1D.

l'Etude globale sur le Rhône par le bureau d'étude Egis-Eau. Il s'agit également d'un modèle à casier 1D qui utilise le code de calcul STREAM développé par Egis-Eau.

Ces deux modèles ont été actualisés après la crue de décembre 2003 sur le secteur en aval de Viviers.

Considérations sur les modèles hydrauliques : ces modèles sont construits à partir des données topographiques et bathymétriques disponibles. Les modèles sont calés, après construction, sur les relevés effectués pendant une crue. Ainsi, un nouveau modèle serait calé sur les mêmes observations que celles qui ont été utilisées pour les modèles existant et les résultats de calcul seraient très voisins. Par ailleurs, la construction et le calage d'un nouveau modèles représente une opération longue, également tributaire de la disponibilité des données. Ceci a justifié que les résultats des modèles existant soient retenus comme suffisamment représentatifs des conditions actuelles d'écoulement. Par ailleurs, les résultats de ces calculs, qui correspondent à chaque scénario hydrologique et à des hypothèses de calcul bien précis, doivent être utilisés de manière raisonnée. Les cartographies de l'aléa sont en effet élaborés dans un objectif de prévention et n'ont pas pour objet la prédiction exacte des phénomènes de crues.


4. Par croisement avec la topographie, détermination de l'enveloppe inondable dans le lit majeur et les hauteurs d'eau

Le modèle hydraulique existant sur le Rhône est d'abord construit pour la gestion du lit mineur; il calcule une ligne d'eau en de nombreux profils du lit mineur, et uniquement des niveaux moyens dans les casiers d'inondation. Ces casiers d'inondation sont construits pour représenter correctement les volumes dans le lit majeur. Du fait de leur taille adaptée à la modélisation de grands linéaires du Rhône, ils ne permettent pas de tracer directement l'enveloppe de la zone inondable car les données calculées ne renseignent pas sur les pentes de niveau d'eau à l'intérieur de ces casiers.

L'aléa des crues faible, moyenne et extrême est obtenu par projection horizontale de la ligne d'eau en lit mineur sur le lit majeur pour délimiter la zone inondable en utilisant les données topographiques disponibles. Cette projection est réalisée en prenant en compte le fonctionnement hydraulique (intrados ou extrados, largeur de la zone d'expansion), ainsi que les zones partiellement protégées par des ouvrages où l'inondation se produit par remontée depuis un point de débordement situé en aval. Le mode de projection horizontale constitue une hypothèse correspondant à une crue de longue durée, ce qui se justifie par les objectifs de prévention de la cartographie de l'aléa.

La carte ci-dessous présente un exemple pour la crue moyenne des données de niveaux d'eau qui permettent de déterminer l'enveloppe inondable de référence à partir du croisement entre ces niveaux d'eau et la topographie ; ces niveaux d'eau issus des modélisations hydrauliques sont rattachés aux objets suivants :

- des profils renseignant sur les niveaux en lit mineur, représentés par des droites de projection
- des zones de remontée par l'aval où le niveau d'eau calculé au point de communication avec le lit mineur est appliqué horizontalement
- des casiers représentant soit le niveau en lit mineur, soit les niveaux en lit majeur.

Le croisement entre ces données et la topographie fournie par la base de données topographiques du Rhône de l'IGN de 2010 (précision du MNT : 1 point tous les 2m et précision à 20cm sur la cote z) ou par le MNT utilisé pour la cartographie du PPRi dans les secteurs non couverts par la BDT Rhône permet de déterminer avec une grande précision les hauteurs d'eau en tout point de l'enveloppe inondable. Pour le Rhône, les crues sont relativement lentes et les vitesses d'écoulement sont significative dans le « lit majeur actif » comprenant l'espace de mobilité récent (géologiquement) du Rhône, mais les vitesses d'écoulement deviennent moins importantes dans les zones fonctionnant comme des casiers d'inondation et a fortiori dans les zones de remontée par l'aval. Par ailleurs, les modèles 1D ne calculent pas les vitesses en tous points du lit mais uniquement des vitesses moyennes aux profils et aux liaisons entre casiers. On ne recherche donc pas à prendre en compte la vitesse d'écoulement des eaux comme un facteur aggravant. L'aléa est représenté selon 4 classes de hauteur :

- 0-0,5m; - 0,5-1m; - 1-2m;
- supérieur à 2m.

Ouvrages pris en compte

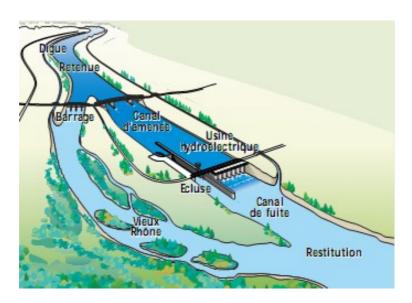
Conformément à la doctrine Rhône et à la circulaire de juillet 2012, les secteurs endigués restent exposés au risque d'inondation pour les crues moyennes et extrêmes du fait des possibles surverses voire des ruptures des ouvrages de protection.

Pour la crue faible, en l'absence d'une expertise sur l'ouvrage, le même principe est appliqué.

L'aléa est d'abord qualifié et affiché hors ouvrage de protection, comme si la digue n'existait pas (projection horizontale de la ligne d'eau lit mineur dans le lit majeur).

Le sur-aléa lié au risque de défaillance de l'ouvrage en cas de rupture est ensuite pris en compte sous la forme d'une bande de sécurité en arrière immédiat de la digue où l'aléa est considéré comme fort. La largeur de cette bande dépend de la différence de hauteur entre la cote de référence dans le lit mineur et le terrain naturel :

- 100 mètres de large si cette différence est inférieure à 1.50 mètres ;
- 150 mètres de large si cette différence est comprise entre 1.50 et 2.50 mètres ;
- 250 mètres de large si cette différence est comprise entre 2.50 et 4 mètres ;
- 400 mètres si cette différence est supérieure à 4 mètres.


Cas particulier des aménagements hydroélectriques de retenue

La morphologie du fleuve Rhône a beaucoup évolué du fait des aménagements multiples qui se sont succédés au cours du temps, on rappellera : les ouvrages de protection des villes (alignement de quais) réalisés après la crue de 1856, les épis Girardon chargés, à partir des années 1880, d'améliorer la navigation fluviale ou encore les aménagements hydroélectriques de la Compagnie nationale du Rhône après la Seconde Guerre mondiale. Le linéaire rhodanien est aujourd'hui en grande partie artificialisé, à l'image des 19 aménagements hydroélectriques exploités par la Compagnie Nationale du Rhône (CNR) qui jalonnent le fleuve depuis Génissiat après la frontière Suisse jusqu'à Vallabrègues, à l'amont du delta de Camargue. Le barrage de Génissiat, le plus en amont du Rhône français, est un barrage réservoir de 70 mètres de hauteur et d'une capacité totale de 53 millions de m³ (capacité utile de 12 millions de m³) qui barre totalement le lit du fleuve. Les autres ouvrages fonctionnent au fil de l'eau avec des dérivations vers les usines hydroélectriques pour tous les aménagements sauf celui de Vaugris qui ne comporte pas de dérivation. Par conséquent, si les crues historiques antérieures aux aménagements de la CNR nous enseignent certaines leçons de l'histoire longue des crues du Rhône, elles ne peuvent pas être utilisées comme des événements de référence qui pourraient se reproduire à l'identique aujourd'hui.

Il faut ajouter à ces équipements les aménagements hydroélectriques importants réalisés sur des affluents. Aucun de ces aménagement n'a de fonction de rétention des crues. Ainsi, les consignes de gestion en période de crue sont basées sur le maintien de la sécurité de ces aménagements. Selon le niveau de remplissage de la retenue avant un épisode de crue, cette gestion peut permettre de stocker une partie des débits entrant jusqu'au niveau maximal d'exploitation. Ensuite, les aménagements ont la capacité d'évacuer vers l'aval l'intégralité du débit entrant dans l'aménagement. Les principaux aménagements hydroélectriques des affluents du bassin du Rhône (Vouglans sur l'Ain, Tignes et Monteynard sur le bassin de l'Isère, Serre-Ponçon et Sainte-Croix sur la Durance) interceptent moins de 10% du bassin versant du Rhône; ils peuvent avoir une influence sur les crues faibles du Rhône mais ils n'ont qu'une influence limitée sur les crues importantes du Rhône.

L'impact des **19 aménagements hydroélectriques sur le Rhône** (18 aménagements de la Compagnie Nationale du Rhône et 1 aménagement EDF) sur le déroulement des crues n'est pas significatif, les consignes de conduite des aménagements étant basées sur les paramètres de la propagation naturelle avec un débit maximum admissible dans le canal usinier (débit d'équipement de l'usine hydroélectrique et débit des déchargeurs selon les aménagements) et un abaissement progressif du barrage dès les faibles crues pour faire passer le débit complémentaire.

La configuration du Rhône aménagé, conduit à distinguer le régime hydraulique des branches en retenue et des canaux usiniers de celui des branches non artificialisées : Vieux-Rhône (ou Rhône court-circuité) et Rhône naturel (entre deux aménagements). Les branches en retenue et les canaux usiniers répondent aux caractéristiques des barrages.

Les branches en retenue garantissent un haut degré de sécurité : protection « millénale » avec revanche de 0.5 ou 1 mètre), fonctionnement particulier (toujours en eau), encadrement réglementaire propre aux barrages, et procédures précises de surveillance et de contrôle. Conformément à la circulaire du 16 juillet 2012, les espaces situés à l'arrière de ces ouvrages sont considérés comme des espaces soustraits à l'inondation pour les trois scénarios de crue. Les espaces soustraits sont déterminés par la projection horizontale de la ligne d'eau en lit mineur de la crue extrême sur le lit majeur. Une bande de sécurité de 100m est également représenté à l'aval des ouvrages conformément aux pratiques PPRi préconisés par la doctrine Rhône.

Les canaux usiniers ne sont pas considérés comme ayant pour effet de soustraire des espaces à l'inondation étant donné que les débits sont contrôlés dans le canal (le sur-débit de crue passant dans le Vieux Rhône). Par conséquent, les canaux usiniers ne sont pas pris en compte dans la cartographie de l'aléa pour les trois scénarios de crue.

2.5 - Carte de synthèse des surfaces inondables

Il s'agit de cartes restituant la synthèse des surfaces inondables de l'ensemble des scénarios (fréquent, moyen, extrême) par type d'aléa considéré pour le TRI. Ne sont ainsi représentées sur ce type de carte que les limites des surfaces inondables.

Les cartes de synthèse du TRI de Montélimar ont été établies pour les débordements du Rhône.

Plus particulièrement pour la cartographie des débordements de cours d'eau, celle-ci a été élaborée à partir de l'agrégation par scénario des enveloppes de surfaces inondables de chaque cours d'eau cartographié. Ainsi, dans les zones de confluence, l'enveloppe retenue correspond à l'extension du cours d'eau le plus étendu en un point donné pour le scénario considéré.

Son échelle de validité est le 1 / 25 000e.

IV. Cartographie des risques d'inondation du TRI

La cartographie des risques d'inondation est construite à partir du croisement entre les cartes de synthèse des surfaces inondables et les enjeux présents au sein de ces enveloppes. Elles de fait ont été établies uniquement pour l'ensemble des débordements de cours d'eau (et les submersions marines).

En outre, une estimation de la population permanente et des emplois a été comptabilisée par commune et par scénario. Celle-ci est complétée par une comparaison de ces résultats avec la population communale totale et la population saisonnière moyenne à l'échelle de la commune.

Son échelle de validité est le 1 / 25 000e.

2.6 - Méthode de caractérisation des enjeux

L'élaboration des cartes de risque s'est appuyée sur un système d'information géographique (SIG) respectant le modèle de données établi par l'IGN et validé par la Commission de Validation des Données pour l'Information Spatialisée (COVADIS)¹.

Certaines bases de données ont été produites au niveau national, d'autres données proviennent d'informations soit d'une base commune à l'échelle du bassin, issue des travaux de l'évaluation préliminaire des risques d'inondation (EPRI), soit de bases plus locales.

2.7 - Type d'enjeux caractérisés pour la cartographie des risques

L'article R. 566-7 du Code de l'environnement demande de tenir compte a minima des enjeux suivants :

- 1. Le nombre indicatif d'habitants potentiellement touchés ;
- 2. Les types d'activités économiques dans la zone potentiellement touchée ;
- 3. Les installations ou activités visées à l'annexe I de la directive 2010/75/ UE du Parlement européen et du Conseil du 24 novembre 2010 relative aux émissions industrielles (prévention et réduction intégrées de la pollution), qui sont susceptibles de provoquer une pollution accidentelle en cas d'inondation, et les zones protégées potentiellement touchées visées à l'annexe IV, point 1 i, iii et v, de la directive 2000/60/ CE du Parlement européen et du Conseil du 23 octobre 2000

¹ La Commission de Validation des Données pour l'Information Spatialisée (COVADIS) est une commission interministérielle mise en place par le ministère de l'écologie, du développement durable et de l'énergie et par le ministère de l'agriculture et de l'agroalimentaire pour standardiser leurs données géographiques les plus fréquemment utilisées dans leurs métiers. Cette standardisation prend la forme de *géostandards* que les services doivent appliquer dès qu'ils ont à échanger avec leurs partenaires ou à diffuser sur internet de l'information géographique. Ils sont également communiqués aux collectivités territoriales et autres partenaires des deux ministères. La COVADIS inscrit son action en cohérence avec la directive INSPIRE et avec les standards reconnus.

établissant un cadre pour une politique communautaire dans le domaine de l'eau;

- 4. Les installations relevant de l'arrêté ministériel prévu au b du 4° du II de l'article R. 512-8 ;
- 5. Les établissements, les infrastructures ou installations sensibles dont l'inondation peut aggraver ou compliquer la gestion de crise, notamment les établissements recevant du public.

Conformément à cet article, il a été choisi de retenir les enjeux suivant pour la cartographie des risques du TRI ·

1. Estimation de la population permanente dans la zone potentiellement touchée

Il s'agit d'une évaluation de la population permanente présente dans les différentes surfaces inondables, au sein de chaque commune du TRI. Celle-ci a été établie à partir d'un semi de point discrétisant l'estimation de la population légale INSEE 2010 à l'échelle de chaque parcelle. Les précisions sur la méthode sont explicitées en annexe.

L'estimation des populations est présentée dans un tableau figurant dans l'atlas cartographique.

2. Estimation des emplois dans la zone potentiellement touchée

Il s'agit d'une évaluation du nombre d'emplois présents dans les différentes surfaces inondables, au sein de chaque commune du TRI. L'évaluation se présente sous forme de fourchette (minimum-maximum). Elle a été définie en partie sur la base de donnée SIRENE de l'INSEE présentant les caractéristique économiques des entreprises du TRI. Les précisions sur la méthode sont explicitées en annexe.

L'estimation de la fourchette d'emploi est présentée dans un tableau figurant dans l'atlas cartographique.

3. Estimation de la population saisonnière

Deux types d'indicateurs ont été définis afin de qualifier l'éventuelle affluence touristique du TRI : le surplus de population saisonnière théorique et le taux de variation saisonnière théorique.

Ces indicateurs ont été établis à partir des données publiques de l'INSEE à l'échelle communale. A défaut de disposer d'une précision infra-communale, ils n'apportent ainsi pas d'information sur la capacité touristique en zone inondable.

Le surplus de la population saisonnière théorique est estimé à partir d'une pondération de la capacité de différents types d'hébergements touristiques mesurables à partir de la base de l'INSEE : hôtels, campings, résidences secondaires et locations saisonnières. Certains types de hébergements à l'image des chambres d'hôte ne sont pas comptabilisées en l'absence d'information exhaustive.

Le taux de variation saisonnière théorique est quant à lui défini comme le rapport entre le surplus de la population saisonnière théorique et la population communale permanente. Il apporte une information sur le poids de l'affluence saisonnière au regard de la démographie communale.

Ces indicateurs restent informatifs au regard de l'exposition potentielle de l'affluence saisonnière aux inondations faute de précision. Par ailleurs, elle doit être examinée en tenant compte de la concomitance entre la présence potentielle de la population saisonnière et la survenue éventuelle d'une inondation. Ainsi dans les territoires de montagne, les chiffres importants correspondent parfois à une variation hivernale (stations de ski par exemple), généralement en dehors des périodes à risque d'inondation.

Les précisions sur la méthode sont explicitées en annexe.

4. Bâtiments dans la zone potentiellement touchée

Seuls les bâtiments dans la zone potentiellement touchée sont représentés dans les cartes de risque. Cette représentation est issue de la BDTopo de l'IGN (pour plus de détails : http://professionnels.ign.fr/bdtopo). Ils tiennent compte de l'ensemble des bâtiments de plus de 20m² (habitations, bâtiments industriels, bâtis remarquables, ...).

5. Types d'activités économiques dans la zone potentiellement touchée

Il s'agit de surfaces décrivant un type d'activité économique inclus, au moins en partie, dans une des surfaces inondables. Cette information est issue de la BDTopo de l'IGN (pour plus de détails : http://professionnels.ign.fr/bdtopo). Elle tient compte des zones d'activités commerciales et industrielles, des zones de camping ainsi que des zones portuaires ou aéroportuaires.

6. <u>Installations polluantes</u>

Deux types d'installations polluantes sont prises en compte : les IPPC et les stations de traitement des eaux usées.

Les IPPC sont les ICPE (installations classées pour la protection de l'environnement) les plus polluantes, définies par la directive IPPC (Integrated Pollution Prevention and Control), visées à l'annexe I de la directive 2010/75/UE du Parlement européen et du Conseil du 24 novembre 2010 relative aux émissions industrielles. Il s'agit d'une donnée établie par les DREAL collectée dans la base S3IC pour les installations situées dans une des surfaces inondables du TRI.

Les stations de traitement des eaux usées (STEU) prisent en compte sont les installations de plus de 2000 équivalents-habitants présentes dans la surface inondable du TRI.

La localisation de ces stations est issue d'une base de donnée nationale « BDERU » complétée par la base de donnée de l'Agence de l'Eau Rhône-Méditerranée-Corse. Les données sont visualisables sur http://assainissement.developpement-durable.gouv.fr/.

7. Zones protégées pouvant être impactées par des installations polluantes

Il s'agit des zones protégées pouvant être impactées par des installations polluantes IPPC ou par des stations de traitement des eaux usées. Ces zones, rapportées dans le cadre de la directive-cadre sur l'eau 2000/60/CE (DCE), sont les suivantes :

- « zones de captage » : zones désignées pour le captage d'eau destinée à la consommation humaine en application de l'article 7 de la directive 2000/60/CE (toutes les masses d'eau utilisées pour le captage d'eau destinée à la consommation humaine fournissant en moyenne plus de 10 m3 par jour ou desservant plus de cinquante personnes, et les masses d'eau destinées, dans le futur, à un tel usage);
- « eaux de plaisance » : masses d'eau désignées en tant qu'eaux de plaisance, y compris les zones désignées en tant qu'eaux de baignade dans le cadre de la directive 76/160/CEE (« eaux de baignade » : eaux ou parties de celles-ci, douces, courantes ou stagnantes, ainsi que l'eau de mer, dans lesquelles la baignade est expressément autorisée par les autorités compétentes de chaque État membre ou n'est pas interdite et habituellement pratiquée par un nombre important de baigneurs) ; en France les « eaux de plaisance » se résument aux « eaux de baignade » ;
- « zones de protection des habitats et espèces » : zones désignées comme zone de protection des habitats et des espèces et où le maintien ou l'amélioration de l'état des eaux constitue un facteur important de cette protection, notamment les sites Natura 2000 pertinents désignés dans le cadre de la directive 92/43/CEE et de la directive 79/409/CEE.

8. Établissements, infrastructures ou installations sensibles dont l'inondation peut aggraver ou compliquer la gestion de crise, notamment les établissements recevant du public

Il s'agit des enjeux dans la zone potentiellement touchée dont la représentation est issue de la BDTopo de l'IGN (pour plus de détails : http://professionnels.ign.fr/bdtopo).

Ils ont été divisés en plusieurs catégories :

- *les bâtiments utiles pour la gestion de crise* (centres de décisions, centres de sécurité et de secours) référencés « établissements utiles pour la gestion de crise », sont concernés les casernes, les gendarmeries, les mairies, les postes de police, les préfectures ;
- les bâtiments et sites sensibles pouvant présenter des difficultés d'évacuation, ils sont référencés dans : « établissements pénitentiaires », « établissements d'enseignement », « établissements hospitaliers », « campings » ;
- les réseaux et installations utiles pour la gestion de crise, ils sont référencés dans : « gares », « aéroports », « autoroutes, quasi-autoroute », « routes, liaisons principales », « voies ferrées principales » ;
- les établissements ou installations susceptibles d'aggraver la gestion de crise, ils sont référencés dans : « installations d'eau potable », « transformateurs électriques », « autre établissement sensible à la gestion de crise » (cette catégorie recense principalement les installations SEVESO et les installations nucléaires de base (INB)).

V. Liste des Annexes

> Annexe I : Atlas cartographique

- Cartes des surfaces inondables de chaque scénario (fréquent, moyen, extrême) pour les débordements de cours d'eau.
- Cartes de synthèse des surfaces inondables des différents scénarios pour les débordements de cours d'eau.
- Cartes des risques d'inondation
- Tableaux d'estimation des populations et des emplois par commune et par scénario.

> Annexe II : Compléments méthodologiques

- Description de la base de données SHYREG
- Description de l'outil de modélisation CARTINO
- Description de la méthode d'estimation de la population permanente dans la zone potentiellement touchée
- Description de la méthode d'estimation des emplois
- Description de la méthode d'estimation de la population saisonnière
- Métadonnées du SIG structurées selon le standard COVADIS Directive inondation

Direction régionale de l'Environnement de l'Aménagement et du Logement RHÔNE-ALPES délégation de bassin Rhône-Méditerranée

69453 LYON CEDEX 06

Tél : 33 (01) 04 26 28 60 00 **Fax : 33 (01)** 04 26 28 67 19

